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A new method to vectorise the SPH (smooth particle hydrodynamics) code is presented 
that makes the CPU time grow linearly with the number of particles. This method is presented 
in 2D, but can be easily extended to 3D, with only ~20% increase in memory.  One of the 
main advantages of this hydrodynamical code is that a variable particle size can be used. This 
implies a variable spatial resolution, particularly useful to sample high density regions, in 
density-contrasted physical problems. 0 1991 Academic PESS, IX 

1. INTRODUCTION 

Most hydrodynamical problems require numerical calculations because of their 
complexity and  some of them, such as astrophysical collapses, bring into play steep 
density gradients. It may be  interesting to have at one’s disposal a  code with 
variable resolution. A lot of methods are proposed to simulate the fluid equations, 
but one  of them (i.e., SPH method [S]) calls on  the Lagrangian description of a  
fluid and  has appreciable advantages. 

Thanks to the development of vectorial and  parallel computers with more and  
more memory available, the number  of particles may be  large enough  and  the 
resolution sufficient for a  lot of problems. To  optimize the computing time  we 
propose a  new scheme to carry out the vectorising of the SPH. Our scheme is 
machine-independent,  in the sense that it optimizes automatically the vector sizes 
in the function of the machine characteristics. This allows us to benefit from the 
advantages of a  Lagrangian description having a  variable resolution (unlike the 
Eulerian one), without being penal ized by the CPU time. 

In the first section we present the numerical technique that will be  compared with 
other schemes, while in the second section our new vector 2D-scheme performed on  
the VP200 will be  described. We  explain the smoothing kernel, artificial viscosity, 
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and the tests carried out with variable resolution according to the smoothing length 
in Sections 3 and 4. Results of isothermal collapses will be compared with analog 
data from other authors in Section 5. 

2. PHILOSOPHY OF THE CODE 

The Numerical Technique and Comparison with Other Schemes 

We use a Lagrangian description of a fluid by treating elements of fluid as 
finite-sized particles, the so-called smoothed particle hydrodynamics (SPH). This 
numerical technique was first introduced by Lucy [ 121, and since then well studied 
by Gingold and Monaghan [6,7 3, Monaghan and Lattanzio [ 151. It was shown 
to give very good results in many different applications [2, 11, 193. 

Several methods can be used to simulate fluids dynamics: the Eulerian and 
Lagrangian schemes and intermediate ones as PIC (particle in cell) [S], which use 
a grid to facilitate the computations of the forces on the particles. However, the 
Lagrangian scheme is attractive and has important advantages over the other 
descriptions. First, it places the particles where the material is and should lead to 
a more economical calculation, especially if the code is vectorised, since the search 
of the neighbouring particles is the most penalizing for a scalar computation. 
Second, the main difficulty in the Eulerian description lies in the advective terms, 
while in the Lagrangian scheme the particles carry out the fluid quantities and the 
advective terms are intrinsically taken into account. Third, the PIC scheme requires 
interpolations, each time step, from grid to particles and from particles to grid, 
when the SPH code calculates the macroscopic quantities directly at the position of 
the fluid elements. Finally, owing to the variable smoothing length, the resolution 
is better in the high density regions. 

Since the basic principles of the SPH method have been described in the 
references listed above, we will give only the main results. 

Any macroscopic variable G can be evaluated as: 

G(r) = C mi(G(rJlp(rJ) w(lr - ril, hi), (2.1) 

where ri are the vector positions of a set of N particles, w is the smoothing kernel, 
and hi is the smoothing length; hi is a function of ri and then of the density. Also 
the derivatives of the fluid quantities are definable in terms of VW,. so 

VW) = C miG(ri) Vw(Ir - ril, hi), (2.2) 

where p is the estimate of the density: 

p(r) = 1 m,w(lr - riI, hii (2.3) 
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Using this formalism we now write the equation of motion for the ith particle in 
the form: 

dvJdt = - (VP/P)~ -Vi@ + (FJvisc (2.4) 
with (VP/P)~ = cj mjPj/pjpiViw(r,i, h,). 

Here rij = (r - ri\, @  is the external potential (gravitational, for example) and 
(Fi)+ is the term due to natural and artificial viscosity. To ensure better conserva- 
tion of the momentum and energy, G ingold and Monaghan [6] have rewritten the 
pressure terms, 

(2.5) 

which can be further symmetrised by taking h, = (hi + hj)/2 (see [4, 9]), to satisfy 
the action reciprocity principle. 

However, in the problems that we have treated, the difference with the direct 
terms (more economic in CPU) was not significant, and we did not use this 
complex form. Indeed, we have tested the local conservation of momentum by 
checking that: 

dvJdt = -VP/p -V@ + Fvisc, (2.6) 

i.e., by checking the accuracy of the Eulerian equation of motion, when all terms 
are estimated by the SPH smoothing procedure, in other words by averaging all 
physical quantities over all neighbours. If momentum was not conserved because of 
asymmetries between h, and h,, Eq. (2.6) would not be satisfied, even if all particles 
were advanced according to the Lagrangian equation (2.4). 

The tests have been performed at 1D on the isothermal shock problem and in 2D 
with the Gaussian density distribution (cf. discussion in Section 3). Equation (2.6) 
was verified within 1%. This can be explained by our determination of hi 
(Section 4), which leads a slowly varying h over the spatial resolution of the 
simulations. 

We will go back to the smoothing length and artificial viscosity in Section 4. 

Algorithms of the Vectorisation 

The equations of Section 2 show that the pressure and force calculations are 
completed by summations over neighbours, with weighting W. Since the average 
number of neighbours (around 21 with our kernel W,, see Section 4) is small, it is 
not efficient to vectorise these summations directly. As the number of particles N is 
of the order of 104, the summations using vectors of size N will be much more 
gratifying. The direct method would consist of, for each given particle, a search for 
its neighbours and then calculation of the corresponding physical quantities. The 
method presented here proceeds in the reverse way: it is necessary to define in 
advance the neighbours of each particle and to construct arrays storing all physical 
quantities corresponding to these neighbours. 

To optimise the search of neighbours, we proceed in several steps. In the first step 
we superpose a grid on the ensemble of particles, to locate each particle, and then 
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to select its potential neighbours in the nearest cells. The number of potential 
neighbours is maintained at ~50 by adjusting the number of surrounding cells 
and/or the cell size. On these potential neighbours we can then compute the inter- 
particle distances and determine the true neighbours. Once the neighbours have 
been determined for each particle, one simple method would be to sum over the 
same number of neighbours (i.e., Nneighbours max). But the problem is the large 
range in the number of neighbours, which goes from 2 to 40. This implies a lot of 
unnecessary calculations, namely for the particles which have a few neighbours. 
Therefore we will sort particles in groups, according to their number of neighbours. 
The details of the group dispatching are described in Section 3 (steps 1, 2, 3). 

3. DETAILED DESCRIPTION OF THE ALGORITHM 

To optimise the search for neighbours, a grid is superposed on the system, the 
cell of which is chosen to be the maximum size of a particle (h,,,). Pre-gathering 
particles in groups avoids the N2 tests on the relative distance of each couple of 
particles. The principal stages of the algorithm are the search for the neighbouring 
particles (which decomposes in a search for every particle in a given cell, chained 
in a linked list, and the calculation of true neighbours) and the summation over 
these ones (with CPU time proportional to Nneighbours x N). 

The current scalar scheme is then: 

- The linked lists. 

C Loop over the number of particles 
DO 1J = 1, N 

LL = L(J) 
MM = M(J) 

C if first particle found, particle J can be chained in 4 
IF (NUM(LL, MM).NE.O) GO TO 4 

C if first particle not found, J is the first 
NUM(LL, MM) = J 
GOT01 

C search for the first null element in ICHAIN to place J 
4 K = NUM(LL, MM) 
6 KP = ICHAIN( K) 

IF (KP.EQ.0) GO TO 8 
K=KP 
GOT06 

8 ICHAIN( K) = J 
1 CONTINUE 

where L and A4 are the coordinates of the cell containing the particle J, 
NUM(L, M) the number of the first particle found in the cell (L, M), and ICHAIN 
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the array of numbers of successive particles of the same chain (i.e., found in the 
same cell). 

- The search for the neighbours in the nine surrounding cells including the 
cell of the particle and the calculation of the macroscopic quantities (here p = den): 

DO 235 = 1, N 
23 DEN(J) = 0 

C loop 2 is over the number of particles 
DO2J= 1, N 

LX = L(J) + 1 
LN=L(J)- 1 
MX=M(J)+l 
MN=M(J)-1 

C loop 21 is over the surrounding cells 
DO 21 LL = LN, LX 
DO 21 MM = MN, MX 

KT = NUM(LL, MM) 
C If no particle in the cell it is not necessary to calculate W and DEN 

IF (KT.EQ.0) G O  TO 21 
22 CONTINUE 

C Calculation of W(KT, J) 

C calculation of the density 
DEN(J) = DEN(J) + W(KT, J) 

C Use of the chaining to find the neighbours of J and sum 
KP = ICHAIN 
IF (KP.EQ.0) G O  TO 21 
KT=KP 
G O  TO 22 

21 CONTINUE 
2 CONTINUE 

Another more time-effective scalar scheme is given in the Appendix, but this one 
is interesting because it needs less memory. These two loops are not vectorisable 
and our first goal is to suppress the G O  TO instructions. The solution to vectorise 
lies in the calculation in advance of the neighbours of a given particle and then the 
second loop will be replaced by the scheme 1: 

DO lOJ=l, N 

20 
10 

DO 20 KT= 1, NNEIB(J) 
- - physical values calculation - - - - ~ - - - - - 
CONTINUE 

CONTINUE 

581397!l-8 
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where NNEIB(J) is the number of neighbours of the particle J. Then our second 
goal is to reverse the loops in order that the inner loop be longer, because only the 
inner one is vectorised. We have to replace the natural scheme 1 by scheme 2, since 
N is much greater than NEIB, the maximal number of neighbours: 

DO 20 KT = 1, NEIB 
DO lOJ= 1, N 

10 CONTINUE 
20 CONTINUE 

But this scheme involves unnecessary calculations and a loss of CPU time of a 
factor z 10. In the following we describe a method to circumvent the problem. 

The solution is to put the particles in groups, each group being characterized by 
an approximate number of neighbours. We can also distinguish three steps: 

1. the determination of the particles locations, a first sorting according to the 
number of particles per cell, and the search for the closest particles for a given one. 

b 

FIG. 1. (a) In case the cell size is Zh,,, =Z the possible neighbours are located in the nine 
surrounding cells. (b) In case the search is performed per block the cell size is fh,,, = :Z. For the given 
particle (size o) the search in the 3 x 3 block is sufficient. 
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2. a second sorting according to the approximate number of neighbours 

3. a third sorting according to the real number of neighbours, because only 
particles located at a distance smaller than h have a nonzero contribution to the 
macroscopic quantities calculated at the position of the ith particle. 

Steps 1 and 2 

To locate the particles we use a 2D grid whose cell size is the maximum diameter 
2 * km,. In this case the possible neighbours are located in the nine surrounding 
cells of a given particle (see Fig. la). However, since one of the main advantages of 
this code lies in its variable resolution, the size h of the particles can be very 
different; one can therefore search for the neighbours in smaller areas such as 3 x 3 
blocks and 5 x 5 blocks with a block size of l/2 * h,,,, so that the searches in 
the 3 x 3 blocks and in the 5 x 5 blocks are sufficient in mean density regions, and 
a search in the 3 x 3 block only in high density regions (see Fig. lb). For steep 
density gradients it can be better to use 7 x 7 blocks with the appropriate value of 
the size cell. 

After having calculated the location of the jth particle L(J) and M(J), the 
number of particles per cell N, CEL(L, M), the particles are sorted in NGROUP 
groups, according to their values of N, CEL(L, M). For the understanding of the 
following it is necessary to detail the way the sorting is done. Let us define 
NEARM(I1) as the maximum number of particles in one cell for the (II-1)th group. 
Let us define also NINTG(I1) as the integrated number of particles over all groups 
preceding the II group, i.e., Ck Number(k) for k<II-1, where Number(k) is the 
number of particles in the kth group. Since particles are attributed to new numbers 
after the group sorting, the label and the rank of any particle in a group are the 
same. Then we start the search per block: 

C loop 1 is over the group number 
DO 1 II = 1, NGROUP 

C definition of the first and last particles in group II 
Nl = NINTG(I1) + 1 
N2 = NINTG( II + 1) 

C maximum number of neighbours in 11th group 
M2 = NEARM(II+ 1) 

C loop 2 is over the number of neighbours 
DO21=1, M2 

C loop 3 is over the particles 
DO 3J=Nl, N2 

LL = L(J) 
MM = M(J) 
K = NPBLOC(J) 

C BEGINNING OF THE SEQUENCE 
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C study of the cell LL - 1, MM - 1 

C if there is a I th particle (KT) in the cell, it is the (k + 1)th potential 
C neighbours of J 

KT = ITPCEL(LL - 1, MM - 1, I) 
IF (KT.NE.0) THEN 
K=K+l 
ITBLOC(J, K) = KT 
ENDIF 

C END OF THE SEQUENCE 

C new value of the number of particles in group J 
NPBLOC(J) = K 

3 CONTINUE 
2 CONTINUE 
1 CONTINUE 

NPBLOC(J) and ITBLOC(J, K) are respectively the number of particles and the 
Kth particle number in the Jth particle block, and ITPCEL(L, M, K) the number 
of the Kth particle in (L, M) cell. The sequence shows the principle of the search 
for the cell (LL - 1, MM - l), and it will be enough to repeat it over all the cells 
to unroll the loop. The inner loop is also longer and is completely vectorised. 

The number of particles per block depends on the density distribution. To give 
an idea we fix the number of particles at N x 3000. For a constant density NBLOC 
lies between 7 and 50 with a mean value of 29, and for a density decreasing 
exponentially from the center, NBLOC lies between 2 and 200 with a mean value 
of 80. 

The particles are then arranged in 9 or 10 groups according to the numbers of 
neighbours in the blocks, with 300 to 1000 particles per group. 

Step 3 

After having found the possible neighbours we have to search more exactly for 
the true neighbours, by carrying out the inter-particle distance R(Z, J) calculations 
inside each group. The second sorting groups have the same order as the first 
sorting ones and use the NINTG2 and NEARM2 arrays, but NEARM2 here is 
the maximum number of particles in the blocks occupied by the particles of the 
(II - 1)th group: 

C loop 1 is over the group number 
DO 1 II = 1, NGROUP 

C definition of the first and last particles in group II 
Nl = NINTG2(11) + 1 
N2 = NINTG2(II + 1) 
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C maximum number of neighbours in group II 
M2 = NEARM2(11+ 1) 

C loop 2 is over the number of neighbours 
DO21=1, M2 

C loop 3 is over the particles 
DO 3J=Nl, N2 

C if the Ith particle in the bloc of J is close enough to J then it is the 
C (NNEIB + 1)th true neighbour 

KT = ITBLOC( J, I) 
IF (R(J, I).LT.H(KT)) THEN 
NNEIB(J) = NNEIB(J) + 1 
K = NNEIB(J) 
ITNEIB(J, K) = KT 
ENDIF 

3 CONTINUE 
2 CONTINUE 
1 CONTINUE 

NNEIB(J) is the number of neighbours of particle J, and ITNEIB(J, K) is the 
label of the Kth neighbour of particle J. 

The particles are then sorted into new groups according to the real number of 
neighbours. After this the number of particles per group lies between 6 and 40 with 
a mean value of 21 for the two density distributions. 

Discussion 

The three sorting steps are necessary but play different roles. Without the first 
ordering the external loop in the blocks calculation would be performed over the 
maximum number of particles in a cell. Both other sortings are used because the 
calculations of the inter-particle distances and the comparison with the particle size 
can be penalizing if the calculations are carried out over too many particles. The 
second sorting also reduces the number of particles used to carry out the third 
ordering. The third sorting groups have the same order as the first sorting ones 
and use the NINTG3 and NEARM3 arrays, but NEARM3 here is the maximum 
number of neighbours in the (II - 1) th group. The structure of a vectorisable and 
optimized loop for the density calculation is then: 

C loop 10 is over the group number 
DO 1011 = 1, NGROUP 

C definition of the first and last particles in the group 
Nl = NINTG3(11) + 1 
N2 = NINTG3(11+ 1) 

C maximum number of real neighbours in the group 
M2 = NEARM3(11+ 1) 

C loop 20 is over the number of real neighbours 
DO 201= 1, M2, 2 
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C loop 30 is over the particles 
DO30J=Nl, N2 

K=I+l 
C summation to calculate the density 

DEN(J) = DEN(J) + W(J, I) + W(J, K) 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 

NGROUP lies between 9 and 10, and the inner loop is the longest. We have 
unrolled by a factor 2 (K= Z+ 1) the loop 20 to optimize the calculations. 

Between scalar and vectorial runs of the vectorized code we have observer a 
factor 11 in the CPU time, and a factor 6 between the vectorised and scalar codes. 
Figure 2 gives the variation of the CPU time versus the number of particles for the 
three cases (vectorised scheme with vectorisation ON and OFF and scalar scheme). 
Note that the N-body subroutine is not included in the evaluation of the total CPU 
time, but it is only of the order of 3 % (therefore its dependence on N would have 
been washed out by that of the hydrodynamic code). As regards CPU time varia- 
tion versus the particles number, a proportionality has been found (i.e., CPU time 
aN). This is due to the constant number of neighbours necessary to ensure good 
accuracy and to the method that only makes useful calculations. Indeed, we expect 
the CPU time to vary as aN. (NNEIB), this is only an order of magnitude since 
the distribution of potential neighbours may depend on N even if (NNEIB) is 
fixed. 

10000 

number of particles 

FIG. 2. CPU time per time step versus the number of particles for several schemes: vectorised 
scheme with vectorisation ON and OFF and scalar scheme. The calculations are performed over the 
3 x 3, 5 x 5, and 7 x 7 blocks in the case of the collapse simulation (see Section 5). Note that the N-body 
subroutine is not included in the evaluation of the total CPU time, but it is only of the order of 3%. 



VECTORISING THE SPH CODE 113 

In the vectorised case the slope of the CPU time vs N is significantly lower than 
one. This can be explained by the vectorised gain at large vector size. 

The calculations of the macroscopic variables and the gradients are more efficient 
(factor 20), while for the search of the neighbours only a factor 5 is observed. This 
method will be also more economical when the physical model includes a lot of 
phenomena as magnetic field, radiation transfer, etc. 

During the run, the number of groups is adjusted by an automatic procedure. It 
calculates over three time-steps the number of groups that optimizes the CPU time. 
The organization of the code is given in Table I. It is interesting to compare the 
performances of the code for two initial distributions of density. We present in 
Table II the CPU times per step for calculations performed over 3 x 3 and 5 x 5 
blocks with uniform and gaussian distributions. For the first one, since the number 
of neighbours is about the same for all particles it is preferable to use only one 

TABLE I 

Organisation of the Program 

MAIN 

lnltial conditions 

Time I Time + dt 

Call HYDRD 

Call STEP 
(time step) 

Call AVANCE 
(external forces,new positions 

and velocities) 

Ngroup optlmlsatlon 

If Time < Time max 

STOP 

lall SORT1 
(first Sorting according N I CEL) 

Call BLOC 
(Search per block) 

Call SORT2 
(second sorting) 

Search of the neighbours 

Call SORT3 
(third sorting) 

calculation of the neighbours distances 
and particles stzes 

Call DENS 
density 

Call VISCO 
artificial viscosity 

Pressure gradients 

RETURN 
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TABLE II 

Time (in ms) for Each Step of the Hydrodynamical Part of the Code 

1 group 

Uniform 
density 

optimisation 

I = r. exp( -x*/a*) 

1 group optimisation 

SORT1 
BLOCK 
SORT2 
NEIGHBOURS 
SORT3 
DISTANCES 
DENS 
VISCO 
GRADIENT 
Total 
Ratio 
Total without 

sorting 
Ratio 

13 
67 
30 
66 
12 
34 
12 
93 

2 
329 

1.1 

214 244 
0.9 1.5 

13 
67 
23 
64 
11 
32 
12 
81 

1 
304 

9 
41 
21 
43 
13 
41 
13 

105 
1 

287 
1.8 

9 
30 
11 
26 

7 
13 
8 

55 
1 

160 

Note. The tests are performed over two density distributions using 3980 particles, a search over the 
3 x 3 and 5 x 5 blocks and with the Gingold-Monaghan viscous tensor. For the exponential function the 
simulation window is [ - 7, + 73 while the half intensity width is 3.5. We give the total CPU time with 
and without sorting for the case where the group’s number is 1, for which the sortings are useless. 

group, while for steeper density gradient the gain is more important with the 
optimised number of groups. Moreover, the program is more efficient for the 
gaussian distribution. 

4. INTERPOLATION KERNELS 

The Kernel 

Each element of fluid is described by a smoothed out distribution of density, by 
using an interpolation function w(r, h). The construction of the interpolation kernel 
w(r, h) is guided by the requirements of accuracy, smoothness and computational 
efficiency [ 151 and then different functions have been used. Unlike the exponential 
function w(r, h) = 1/8Z7h3 exp( -r/h) chosen by Wood [19] that has nonzero 
derivatives in r = 0 and then overestimates the self-contribution of a particle, we 
prefer to build a kernel by 

(Wr, h)/ar),=, = 0 (4.1) 
(dw(r, h)/dr),=,=O (4.2) 

w(r, h),,,=O (4.3 1 
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and, of course, 

h 

27cw(~, h)r dr = 1. (4.4) 

Several authors use a Gaussian function exp( -r2/h2) or a modified Gaussian 
function exp( -r*/h*) * (3/2- r2/h2) [7, 151, but they are very smooth and they 
require a neighbours search over 3h, so that we have chosen polynomial functions 
that are nonzero only in a finite domain. Then the summation over all particles is 
done only over the neighbouring particles. To reach a good interpolation accuracy, 
a minimum number of neighbours have to be taken into account, depending on the 
interpolation function. For the second and third degree polynomials w2 and wj 
given below, a search over h is sufficient with respectively 25 and 21 neighbours, 
unlike the Gaussian function that requires 50 neighbours over 3h: 

W, = 18/(7xh*) (l-3242) for u = r/h < f 

;(1-242) for jdU<l (4.5) 
0 for u>l 

W, = 40/( 7xh*) (1-66u2+6243) for u = r/h < i 

2(1 -U)3 for iQZ461 (4.6) 
0 for u>l 

After testing these functions we have chosen W3 which minimizes the number of 
neighbours and interpolates with errors not exceedig O(h*). 

The Variable Kernel Size 

One of the important points of our scheme lies in the variable kernel size h. Some 
authors [19, 20, 1, 14, 41 have used a variable h that allows a variable resolution, 
without the complex use of windows with varying cell size as in grid schemes. 
Moreover, the size of a fluid element adapts itself automatically according to the 
local density. The relationship between h and p is then [6]: 

h*=Klp where K is a constant. (4.7) 

To optimize the accuracy of the calculations the following iterative procedure can 
be used: 

h* = K/p + calculation of w + calculation of p 

TI 

It converge for the K values that optimize the calculations. Another method can 
be used, such as the determination of the variance (h* = (Ar*) - (A)*) over the 
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particles in a block. However, when the density changes rapidly in time, the h value 
can be extrapolated from the previous time steps. In particular, a too rapid change 
in the h values may be a source of instabilities so that it is better to limit the 
variation to a few percent of the previous value at each time step. However, this 
temporal condition does not guarantee smooth spatial variations of h. 

Therefore, we use a better method which suppresses the instabilities due to 
the variable h. This method consists in calculating the average density at the 
position of a particle and then taking h2 = K/p,,,, . pmean is computed by 
averaging p* over neighbours with the SPH algorithm, i.e., according to 
P mean =(l/P)CimiP(r;) 4lr--il, Ai)= <P’)lP. 

This method limits the variation of h, such that the equations of motion (2.4) are 
still valid in their simple form, without any inclusion of terms proportional to the 
derivatives of h (Vh and ah/at [6]). Evrard [4] has detailed analytically the 
required conditions for these added terms to be negligible, with a kernel size 
depending on the local density and concluded that h must vary on scales “a” much 
larger than h: grad h/grad rcrh*/ra < 1, where r is the mean interparticle distance. 

The Artificial Viscosity 

For all the schemes used to simulate a fluid a crucial test lies in the shock simula- 
tion. Indeed a real shock occurs on the scale of the order of the mean free path of 
the fluid, which is much smaller than the resolution of the simulation. It is then 
necessary to smooth the density distribution over larger scales, such that the shock 
extends over a few resolution lengths. When applying the particle method it is con- 
venient to have recourse to artificial viscosities that can be easily included in the 
equations of fluid. Using our method and our kernel we have tested several artificial 
viscosities proposed by Monaghan and Gingold [7] (1983) and a linear combina- 
tion (CL) of the first such problems introduced: 

The Neumann-Ritchmyer (NR) viscous pressure: 

q = aph*(V .v)’ for V.v<O 

0 for V.v>O 

The Bulk (B) viscosity: 

q= -aphc(V.v) for V.v<O 

0 for V.v>O 

(4.8) 

(4.9) 

FIG. 3. (a-f) Dendity and velocity profiles of an isothermal shock at the time 5C ;’ (where C, is the 
sound speed) with respectively no viscosity, Bulk viscosity (a = 0.8), Neumann-Richtmeyer viscosity 
(a = 0.8), Gingold-Monaghan viscous tensor (aI =0.8, a, = 0, and p =O.l), (a, =0.8, a2 = 0.8, and 
b = O.l), linear combination. 
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where CI is a constant, c is the sound speed, v is the fluid velocity, and p is the 
density. 

The G ingold-Monaghan (GM) viscous tensor: 

17ij = -c~lPi,(alqij + cc*qG) 

(4.10) 

with 

qv = rquyl(hqc~)l(r$lh~ + PI for vi,rti <O 

qii=o for viirii > 0, 

where 0 <j @  1 is a constant and for any function G ; we define 

G ,, = (Gi + GJ2. 

Il,, is such that 

(4.11) 

(4.12) 

We then consider an isothermal shock problem for a perfect gas analogous to 
that considered by Leboeuf et al. [ 111. The initial state consists of a high density 
plateau surrounded by a region where the density is lower. The analytical solutions 
can be calculated only for 1D shocks so that we choose an initial symmetry-the 
density depends only on the x variable-that leads to an 1D solution, although the 
calculations are carried with a 2D code: 

xc -7 or x>7- p=4 

-7<x<7 p=9. 

The results for each artificial viscosity are compared in Figs. 3a to 3f. The conclu- 
sion regarding the advantages of a given viscosity presents several differences from 
those with the shock tube problem (adiabatic) considered by G ingold and 
Monaghan [7] and Sod [18]. The first representation shows, for the case without 
artificial viscosity, the amplification of the oscillations that can lead to numerical 
divergences. The problem is solved by artificial viscosity as is shown by the other 
figures. For this type of shock the NR viscosity does not suppress all the oscilla- 
tions. The density and velocity profiles are more smoothed by the B than by the 
GM, but the GM leads systematically to underestimated velocity values. The linear 
combination is comparable to the GM for the smoothing and to the B for the 
accuracy of the density values. All tests are carried out with variable size kernels. 
The various profiles are given for y = 0, but for finite y the results are comparable; 
i.e., there is no movement in the y-direction except in the neighbourhood of the 
boundaries. Moreover, the same calculation was performed with inversion of the x 
and y variables and the equivalence of the two directions was checked. We conclude 
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that for isothermal shocks the CL or B viscosities can be used although the CL 
underestimates the velocity, and with an important smoothing for the B, while for 
adiabatic shocks the GM leads to better results. 

3 D Extension 

It is straightforward to extend the method in three dimensions, but this will be 
done at the expense of memory and time. This is mainly due to the necessary 
increase of the number N of particles, to keep a performant spatial resolution. 
Within the same N, we can, however, estimate the necessary increase of memory for 

I” ‘I’ “,“I’ ” ‘,‘I’ I I” ‘I”’ / 
b 

d 
” 

FIG. 4. (ad) Non-rotating cylindrical cloud [lo]. (a) shows the initial distribution of particles. 
Figures 4bd on the left side show the positions of the fluid particles and, on the right side, the 
integrated density levels (i.e., 2npR) with 5000 particles, at time f=2.3 x 10”s and for temperatures 
equal respectively to 7.5K, lOK, and 13SK. 
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a 3D simulation. The array that would be considerably extended is TTPCEL, which 
would gain one dimension: the necessary memory is multiplied by the number of 
cells in the grid (here ~2&40), but this array occupied less than &th of the total, 
in 2D, with NZ 104. One of the biggest array is ITBLOC, which has no reason to 
vary. Therefore, the memory increase in 3D, due only to physical vectors (like the 
positions of the particles) is not a major penalizing factor. 

5. ISOTHERMAL COLLAPSE OF AN AXIALLY SYMMETRIC CLOUD 

To compare our method with other hydrodynamic codes we have simulated 
isothermal collapes of axially symmetric clouds. The calculations are performed in 
a meridian plane using cylindrical coordinates r, 8, z, where the azimuthal coor- 
dinate 8 does not appear explicitly because of the assumption of axial symmetry: 
each particle represents a small toroidal element. Accordingly, the Lagrangian 
equations are given below in cylindrical coordinates. 

Dp/Dt+pV.v=O 

Dv, JDt + V, PJp + V,d - this method is not optimal for 
variable resolution calculations, since gravity is computed on a grid, which is fixed 
spatially for all the fluid. In the course of the collapse, however, the total grid has 
been adjusted to the total extension of the fluid, i.e., the spatial resolution evolves 
toward smaller grid size with time. We think that the spatially variable resolution 
is much more important for the fluid hydrodynamics, since it is based on calcula- 
tions over the sole neighbours, than for the long-range gravitation forces. We use 
this method as a comparative test of the program, and we confer the reader to 
gridless methods such as the tree code to solve this problem [9] . The latter, 
however, consume much more computing time. 

More precisely, we solve the N-body interactions in 2D, since the 3D problem is 
axisymmetric. The particles represent tori all with the same vertical axis Oz, and the 
same mass. The convolution of density and gravitational potential is transformed in 
a simple product in the z-direction only. A  direct convolution is made in the 
r-direction. 

The potential between particles of coordinates (r, z) and 

(r’, z’) is that between 
two tori of radii r and r’ and altitude z and z’: 

@ (r, r’, z, z’) = G j &/n[ (z - z’)~ + r2 + rr2 - 2rr’ cos 8 + a’] - l”, (5.5) 
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where a is the softening length (the gravitational potential is softened from the 
Newtonian law in l/r, by l/J=, to compensate for the restricted number of 
particles; a is of the order of the cell size). The potential law (5.5) is computed and 
tabulated once at the beginning of the simulation. 

The dimension of the grid is 64 in radius, and Nz = 256 in z: indeed in the FFT 
method, images must be avoided and the useful grid is only half (Nz useful = 128) 
of the total grid. The linear dimensions of one cell in z and r are therefore equal. 
The CPU time for the FFT varies as N,. log N,, where N, is the cell number. This 
has not been varied here. Besides, the forces computation varies linearly with N, the 

1 ” ” ” ” I ” ” / ” 
c ; : 12ii.34 

FIG. 5. (a-g) Rotating spherical cloud with uniform initial density. (a) shows the initial distribution 
of 6000 particles; Figs. 5b-g show the evolution of the collapsing cloud. The times are given in program 
units (i.e., 127 years). It is possible to distinguish the several steps: (bt(c), contraction along the 2 axis; 
then collapse in the radial direction and formation of a ring. 
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number of particles. For N= 15,000, the contribution of the CPU time is 34 ms 
(3%). 

Two types of initial conditions have been taken. The first one consists in a non- 
rotating cylindrical cloud with the same initial conditions as Larson [IO] as 
illustrated in Fig. 4a. (In Figs. 4a and 5a the central hole surrounding the axis is 
due to the 2D density distribution, because for uniform p the 2D density is equal 
to 271pR, where R is from the axis.) The initial mass density then is 

p(r,z)=7.8x10~‘8(l+(10r/R)2)~‘gcm~3, (5.6) 
where R = 10” cm is the radius of the cloud, so that the initial 2D density distribu- 
tion is 

pL(r, z) = 2v(r, z). (5.7) 
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According to Ostriker [ 163 and Mestel [ 131 a cylindrical equilibrium configura- 
tion is possible only if the mass per unit length along the cylinder has the value: 

M/L=2c%'T/G, (5.8) 
where %? is the perfect gas constant. With the assumed initial conditions for 
T= lOK, the gas pressure and the gravity should nearly balance. Figure 4b shows 
the density distribution resulting at a typical time in the collapse (t = 2.3 x lOI s) 
when a temperature of 7.5K is assumed. In this case the horizontal pressure 
gradient is insufficient to prevent the horizontal collapse. On the contrary, when a 
temperature of 13K is assumed (Fig. 4d), the pressure gradient leads to a horizontal 
expansion and, for the critical temperature T= lOK, an equilibrium is observed 
(Fig. 4~). But at greater time, the simulation leads in all cases to a vertical collapse. 

The second simulation consists in the collapse of a spherical rotating cloud with 
uniform initial density p = 4.7 x lo-l9 g cm -3 and 6000 particles (Fig. 5a). The 
same initial conditions as Larson [lo] and Black and Bodenheimer [S] have been 
taken, i.e., a rotation velocity of 0.90,, where o, is the critical rotation velocity for 
the collapse given by 

of=5/R2(0.42GM/R-c;), (5.9) 
where c, is the sound speed. Initially the collapse is mainly in the Z-direction, as 
the cloud is centrifugally supported in the X- Y plane (Figs. 5b-c). Then a strong 
shock forms in the central region and the cloud collapses in the X- Y plane 
(Figs. 5d-g). At the end, the formation of a ring is observed (Fig. 5g) at a position 
comparable to that found by Black and Bodenheimer [3] but the ring is gravita- 
tionally unstable and collapses in the end. These results can be compared with 
Wood’s 3D SPH simulations [ 191 with only 500 particles and therefore low resolu- 
tion. He found that, finally, a non-axisymmetric mode becomes unstable, which 
justifies the 3D simulations. 

FIG. 6. Density levels resulting from the collapse of the rotating cloud. 
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6. CONCLUSION 

We have vectorised the SPH algorithm, which now is quite time-performant with 
respect to other concurrent hydrodynamical codes. The algorithm has the great 
advantages of being Lagrangian and of simple conception. Also the code introduces 
only little dissipation, in contrast to grid-dependent algorithms. In our vectorised 
code, the CPU time grows linearly with the number of particles. This is due to the 
constant number of neighbours necessary to ensure good accuracy and to the algo- 
rithm that suppresses all unnecessary calculations. This enables us to handle many 
more particles and then to improve significantly the dynamics, which was a weak 
point of the SPH algorithm, although somewhat cured by the variable resolution. 
The larger number of particles also allows a correct treatment of the low-density 
regions, such as the boundaries, which was a second difficulty of the method. 

In our code, it is to be noted that the calculations of the macroscopic variables 
and the gradients are much more efficiently vectorised (factor 20), while for the 
search of the neighbours only a factor 5 is observed between vectorial and scalar 
runs. For the whole program, the vectorisation gain is then 6 (Z 1 for 15,000 par- 
ticles). Therefore, the code will be much more interesting when the physical model 
includes a lot of phenomena such as magnetic field, radiative transfer, etc. Our tests 
and comparisons with other works have proved that the variable resolution gives 
good results, particulary for the collapse, where the resolution is a crucial problem. 
Our adjustment of the kernel size h suppresses the instabilities due to its variation 
and is more fit to density distributions with steep gradients. 

APPENDIX 

We present in this appendix a scheme that will be performant on scalar 
processors. 

Calculation of the ITNEIB and NNEIB arrays. 

C loop 1 is over the particles 
DO lJ= 1, N 

L = LL(J) 
M  = MM(J) 

C loop 2 is over the cells of the block 
DO2MR=M-NC, M-NC 
DO2LR=L-NC, L+NC 

KT = NlCEL(LR, MR) 
C if no particle in the cell, it is no necessary to make any 
C calculation 

IF (KT.EQ.0) GO TO 2 
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C calculation of the interparticle distance 
3 DX = X(J) - X(KT) 

DY = Y(J) - Y(KT) 
R2=DX*DX+DY*DY 
H2 = H(KT) * H(KT) 

C if KT is close enough to J then KT is the (NNEIB + 1)th neighbour of J 
IF (R2.LT.H2) THEN 
K = NNEIB(J) + 1 
NNEIB(J) = K 
ITNEIB(J, K) = KT 
ENDIF 

C use of the chaining to find the next neighbour 
KT = ICHAIN( KT) 
IF (KT.NE.0) GO TO 3 

2 CONTINUE 
1 CONTINUE 

where NC is 1 for the 3 x 3 block and 2 for the 5 x 5 one. 

ACKNOWLEDGMENT 

The calculations have been performed on the VP 200 of the CIRCE (Centre Inter Regional de Calcul 
Electronique, Orsay). 

REFERENCES 

1. W. BENZ, Astron. Astrophys. 139, 378 (1984). 
2. W. BENZ AND J. G. HILLS, Astrophys. J. 323, 614 (1987). 
3. D. C. BLACK AND P. B~DENHEIMER, Astrophys. J. 206, 138 (1976). 
4. A. E. EVRARD, Mon. Not. R. Astron. Sot. 235, 911 (1988). 
5. R. A. GING~LD AND J. J. MONAGHAN, Mon. Not. R. Aaron. Sot. 181, 375 (1977). 
6. R. A. GINGOLD AND J. J. MONAGHAN, J. Comput. Phys. 46, 429 (1982). 
7. R. A. GINC~LD AND J. J. MONAGHAN, Mon. Not. R. Aaron. Sot. 204, 115 (1983). 
8. F. H. HARLOW, Compur. Phys. Commun. 48, 1 (1988). 
9. L. HERNQUIST AND N. KATZ, Astrophys. J. Suppl. 70, 419 (1989). 

10. R. B. LARSON, Mon. Not. R. Aaron. Sot. 156, 437 (1972). 
11. J. N. LEBOEUF, T. TAJIMA, AND J. M. DAWSON, J. Comput. Phys. 31, 379 (1979). 
12. L. B. LUCY, Astron. J. 82, 1013 (1977). 
13. L. MESTEL, Q. J. R. Asfron. Sot. 6, 161 (1965). 
14. S. C. MIYAMA, C. HAYASHI, AND S. NARITA, Asfrophys. J. 279, 621 (1984). 
15. J. J. MONAGHAN AND J. C. LATTANZIO, Aaron. Astrophys. 149, 135 (1985). 
16. J. OSTRIKER, Astrophys. J. 140, 1056 (1964). 
17. R. H. SANDERS AND K. H. PRENDERGAST, Asfrophys. J. 188, 489 (1974). 
18. G. A. SOD, J. Compui. Phys. 27, 1 (1978). 
19. D. WOOD, Mon. Not. R. Astron. Sot. 194, 201 (1981). 
20. D. WOOD, Mon. Nor. R. Astron. Sot. 199, 331 (1982). 


