
JOURNAL OF COMPUTATIONAL PHYSICS 97, 103-126 (1991)

Vectorising the Smooth Particle Hydrodynamics

B. HADDAD

DAEC and DEMIRM, Observatoire de Paris, Section de Meudon,
F-92195 Meudon principal cedex, France

AND

F. CLAUSSET AND F. COMBES

DEMIRM, Observatoire de Paris, Section de Meudon, F-92195 Meudon principal cedex, France, and
Radioastronomie MillimPtrique, ENS, 24 Rue Lhomond, F-75231 Paris Cedex 05, France

Received February 27, 1989; revised December 5, 1989

A new method to vectorise the SPH (smooth particle hydrodynamics) code is presented
that makes the CPU time grow linearly with the number of particles. This method is presented
in 2D, but can be easily extended to 3D, with only ~20% increase in memory. One of the
main advantages of this hydrodynamical code is that a variable particle size can be used. This
implies a variable spatial resolution, particularly useful to sample high density regions, in
density-contrasted physical problems. 0 1991 Academic PESS, IX

1. INTRODUCTION

Most hydrodynamical problems require numerical calculations because of their
complexity and some of them, such as astrophysical collapses, bring into play steep
density gradients. It may be interesting to have at one’s disposal a code with
variable resolution. A lot of methods are proposed to simulate the fluid equations,
but one of them (i.e., SPH method [S]) calls on the Lagrangian description of a
fluid and has appreciable advantages.

Thanks to the development of vectorial and parallel computers with more and
more memory available, the number of particles may be large enough and the
resolution sufficient for a lot of problems. To optimize the computing time we
propose a new scheme to carry out the vectorising of the SPH. Our scheme is
machine-independent, in the sense that it optimizes automatically the vector sizes
in the function of the machine characteristics. This allows us to benefit from the
advantages of a Lagrangian description having a variable resolution (unlike the
Eulerian one), without being penal ized by the CPU time.

In the first section we present the numerical technique that will be compared with
other schemes, while in the second section our new vector 2D-scheme performed on
the VP200 will be described. We explain the smoothing kernel, artificial viscosity,

103
0021-9991/91 $3.00

Copyright $2 1991 by Academic Press, Inc.
All nghfs of reproduction in any form reserved.

104 HADDAD, CLAUSSET, AND COMBES

and the tests carried out with variable resolution according to the smoothing length
in Sections 3 and 4. Results of isothermal collapses will be compared with analog
data from other authors in Section 5.

2. PHILOSOPHY OF THE CODE

The Numerical Technique and Comparison with Other Schemes

We use a Lagrangian description of a fluid by treating elements of fluid as
finite-sized particles, the so-called smoothed particle hydrodynamics (SPH). This
numerical technique was first introduced by Lucy [121, and since then well studied
by Gingold and Monaghan [6,7 3, Monaghan and Lattanzio [151. It was shown
to give very good results in many different applications [2, 11, 193.

Several methods can be used to simulate fluids dynamics: the Eulerian and
Lagrangian schemes and intermediate ones as PIC (particle in cell) [S], which use
a grid to facilitate the computations of the forces on the particles. However, the
Lagrangian scheme is attractive and has important advantages over the other
descriptions. First, it places the particles where the material is and should lead to
a more economical calculation, especially if the code is vectorised, since the search
of the neighbouring particles is the most penalizing for a scalar computation.
Second, the main difficulty in the Eulerian description lies in the advective terms,
while in the Lagrangian scheme the particles carry out the fluid quantities and the
advective terms are intrinsically taken into account. Third, the PIC scheme requires
interpolations, each time step, from grid to particles and from particles to grid,
when the SPH code calculates the macroscopic quantities directly at the position of
the fluid elements. Finally, owing to the variable smoothing length, the resolution
is better in the high density regions.

Since the basic principles of the SPH method have been described in the
references listed above, we will give only the main results.

Any macroscopic variable G can be evaluated as:

G(r) = C mi(G(rJlp(rJ) w(lr - ril, hi), (2.1)

where ri are the vector positions of a set of N particles, w is the smoothing kernel,
and hi is the smoothing length; hi is a function of ri and then of the density. Also
the derivatives of the fluid quantities are definable in terms of VW,. so

VW) = C miG(ri) Vw(Ir - ril, hi), (2.2)

where p is the estimate of the density:

p(r) = 1 m,w(lr - riI, hii (2.3)

VECTORISING THE SPH CODE 105

Using this formalism we now write the equation of motion for the ith particle in
the form:

dvJdt = - (VP/P)~ -Vi@ + (FJvisc (2.4)
with (VP/P)~ = cj mjPj/pjpiViw(r,i, h,).

Here rij = (r - ri\, @ is the external potential (gravitational, for example) and
(Fi)+ is the term due to natural and artificial viscosity. To ensure better conserva-
tion of the momentum and energy, G ingold and Monaghan [6] have rewritten the
pressure terms,

(2.5)

which can be further symmetrised by taking h, = (hi + hj)/2 (see [4, 9]), to satisfy
the action reciprocity principle.

However, in the problems that we have treated, the difference with the direct
terms (more economic in CPU) was not significant, and we did not use this
complex form. Indeed, we have tested the local conservation of momentum by
checking that:

dvJdt = -VP/p -V@ + Fvisc, (2.6)

i.e., by checking the accuracy of the Eulerian equation of motion, when all terms
are estimated by the SPH smoothing procedure, in other words by averaging all
physical quantities over all neighbours. If momentum was not conserved because of
asymmetries between h, and h,, Eq. (2.6) would not be satisfied, even if all particles
were advanced according to the Lagrangian equation (2.4).

The tests have been performed at 1D on the isothermal shock problem and in 2D
with the Gaussian density distribution (cf. discussion in Section 3). Equation (2.6)
was verified within 1%. This can be explained by our determination of hi
(Section 4), which leads a slowly varying h over the spatial resolution of the
simulations.

We will go back to the smoothing length and artificial viscosity in Section 4.

Algorithms of the Vectorisation

The equations of Section 2 show that the pressure and force calculations are
completed by summations over neighbours, with weighting W. Since the average
number of neighbours (around 21 with our kernel W,, see Section 4) is small, it is
not efficient to vectorise these summations directly. As the number of particles N is
of the order of 104, the summations using vectors of size N will be much more
gratifying. The direct method would consist of, for each given particle, a search for
its neighbours and then calculation of the corresponding physical quantities. The
method presented here proceeds in the reverse way: it is necessary to define in
advance the neighbours of each particle and to construct arrays storing all physical
quantities corresponding to these neighbours.

To optimise the search of neighbours, we proceed in several steps. In the first step
we superpose a grid on the ensemble of particles, to locate each particle, and then

106 HADDAD, CLAUSSET, AND COMBES

to select its potential neighbours in the nearest cells. The number of potential
neighbours is maintained at ~50 by adjusting the number of surrounding cells
and/or the cell size. On these potential neighbours we can then compute the inter-
particle distances and determine the true neighbours. Once the neighbours have
been determined for each particle, one simple method would be to sum over the
same number of neighbours (i.e., Nneighbours max). But the problem is the large
range in the number of neighbours, which goes from 2 to 40. This implies a lot of
unnecessary calculations, namely for the particles which have a few neighbours.
Therefore we will sort particles in groups, according to their number of neighbours.
The details of the group dispatching are described in Section 3 (steps 1, 2, 3).

3. DETAILED DESCRIPTION OF THE ALGORITHM

To optimise the search for neighbours, a grid is superposed on the system, the
cell of which is chosen to be the maximum size of a particle (h,,,). Pre-gathering
particles in groups avoids the N2 tests on the relative distance of each couple of
particles. The principal stages of the algorithm are the search for the neighbouring
particles (which decomposes in a search for every particle in a given cell, chained
in a linked list, and the calculation of true neighbours) and the summation over
these ones (with CPU time proportional to Nneighbours x N).

The current scalar scheme is then:

- The linked lists.

C Loop over the number of particles
DO 1J = 1, N

LL = L(J)
MM = M(J)

C if first particle found, particle J can be chained in 4
IF (NUM(LL, MM).NE.O) GO TO 4

C if first particle not found, J is the first
NUM(LL, MM) = J
GOT01

C search for the first null element in ICHAIN to place J
4 K = NUM(LL, MM)
6 KP = ICHAIN(K)

IF (KP.EQ.0) GO TO 8
K=KP
GOT06

8 ICHAIN(K) = J
1 CONTINUE

where L and A4 are the coordinates of the cell containing the particle J,
NUM(L, M) the number of the first particle found in the cell (L, M), and ICHAIN

VECTORISING THE SPH CODE 107

the array of numbers of successive particles of the same chain (i.e., found in the
same cell).

- The search for the neighbours in the nine surrounding cells including the
cell of the particle and the calculation of the macroscopic quantities (here p = den):

DO 235 = 1, N
23 DEN(J) = 0

C loop 2 is over the number of particles
DO2J= 1, N

LX = L(J) + 1
LN=L(J)- 1
MX=M(J)+l
MN=M(J)-1

C loop 21 is over the surrounding cells
DO 21 LL = LN, LX
DO 21 MM = MN, MX

KT = NUM(LL, MM)
C If no particle in the cell it is not necessary to calculate W and DEN

IF (KT.EQ.0) G O TO 21
22 CONTINUE

C Calculation of W(KT, J)

C calculation of the density
DEN(J) = DEN(J) + W(KT, J)

C Use of the chaining to find the neighbours of J and sum
KP = ICHAIN
IF (KP.EQ.0) G O TO 21
KT=KP
G O TO 22

21 CONTINUE
2 CONTINUE

Another more time-effective scalar scheme is given in the Appendix, but this one
is interesting because it needs less memory. These two loops are not vectorisable
and our first goal is to suppress the G O TO instructions. The solution to vectorise
lies in the calculation in advance of the neighbours of a given particle and then the
second loop will be replaced by the scheme 1:

DO lOJ=l, N

20
10

DO 20 KT= 1, NNEIB(J)
- - physical values calculation - - - - ~ - - - - -
CONTINUE

CONTINUE

581397!l-8

108 HADDAD, CLAUSSET, AND COMBES

where NNEIB(J) is the number of neighbours of the particle J. Then our second
goal is to reverse the loops in order that the inner loop be longer, because only the
inner one is vectorised. We have to replace the natural scheme 1 by scheme 2, since
N is much greater than NEIB, the maximal number of neighbours:

DO 20 KT = 1, NEIB
DO lOJ= 1, N

10 CONTINUE
20 CONTINUE

But this scheme involves unnecessary calculations and a loss of CPU time of a
factor z 10. In the following we describe a method to circumvent the problem.

The solution is to put the particles in groups, each group being characterized by
an approximate number of neighbours. We can also distinguish three steps:

1. the determination of the particles locations, a first sorting according to the
number of particles per cell, and the search for the closest particles for a given one.

b

FIG. 1. (a) In case the cell size is Zh,,, =Z the possible neighbours are located in the nine
surrounding cells. (b) In case the search is performed per block the cell size is fh,,, = :Z. For the given
particle (size o) the search in the 3 x 3 block is sufficient.

VECTORISING THE SPH CODE 109

2. a second sorting according to the approximate number of neighbours

3. a third sorting according to the real number of neighbours, because only
particles located at a distance smaller than h have a nonzero contribution to the
macroscopic quantities calculated at the position of the ith particle.

Steps 1 and 2

To locate the particles we use a 2D grid whose cell size is the maximum diameter
2 * km,. In this case the possible neighbours are located in the nine surrounding
cells of a given particle (see Fig. la). However, since one of the main advantages of
this code lies in its variable resolution, the size h of the particles can be very
different; one can therefore search for the neighbours in smaller areas such as 3 x 3
blocks and 5 x 5 blocks with a block size of l/2 * h,,,, so that the searches in
the 3 x 3 blocks and in the 5 x 5 blocks are sufficient in mean density regions, and
a search in the 3 x 3 block only in high density regions (see Fig. lb). For steep
density gradients it can be better to use 7 x 7 blocks with the appropriate value of
the size cell.

After having calculated the location of the jth particle L(J) and M(J), the
number of particles per cell N, CEL(L, M), the particles are sorted in NGROUP
groups, according to their values of N, CEL(L, M). For the understanding of the
following it is necessary to detail the way the sorting is done. Let us define
NEARM(I1) as the maximum number of particles in one cell for the (II-1)th group.
Let us define also NINTG(I1) as the integrated number of particles over all groups
preceding the II group, i.e., Ck Number(k) for k<II-1, where Number(k) is the
number of particles in the kth group. Since particles are attributed to new numbers
after the group sorting, the label and the rank of any particle in a group are the
same. Then we start the search per block:

C loop 1 is over the group number
DO 1 II = 1, NGROUP

C definition of the first and last particles in group II
Nl = NINTG(I1) + 1
N2 = NINTG(II + 1)

C maximum number of neighbours in 11th group
M2 = NEARM(II+ 1)

C loop 2 is over the number of neighbours
DO21=1, M2

C loop 3 is over the particles
DO 3J=Nl, N2

LL = L(J)
MM = M(J)
K = NPBLOC(J)

C BEGINNING OF THE SEQUENCE

110 HADDAD, CLAUSSET, AND COMBES

C study of the cell LL - 1, MM - 1

C if there is a I th particle (KT) in the cell, it is the (k + 1)th potential
C neighbours of J

KT = ITPCEL(LL - 1, MM - 1, I)
IF (KT.NE.0) THEN
K=K+l
ITBLOC(J, K) = KT
ENDIF

C END OF THE SEQUENCE

C new value of the number of particles in group J
NPBLOC(J) = K

3 CONTINUE
2 CONTINUE
1 CONTINUE

NPBLOC(J) and ITBLOC(J, K) are respectively the number of particles and the
Kth particle number in the Jth particle block, and ITPCEL(L, M, K) the number
of the Kth particle in (L, M) cell. The sequence shows the principle of the search
for the cell (LL - 1, MM - l), and it will be enough to repeat it over all the cells
to unroll the loop. The inner loop is also longer and is completely vectorised.

The number of particles per block depends on the density distribution. To give
an idea we fix the number of particles at N x 3000. For a constant density NBLOC
lies between 7 and 50 with a mean value of 29, and for a density decreasing
exponentially from the center, NBLOC lies between 2 and 200 with a mean value
of 80.

The particles are then arranged in 9 or 10 groups according to the numbers of
neighbours in the blocks, with 300 to 1000 particles per group.

Step 3

After having found the possible neighbours we have to search more exactly for
the true neighbours, by carrying out the inter-particle distance R(Z, J) calculations
inside each group. The second sorting groups have the same order as the first
sorting ones and use the NINTG2 and NEARM2 arrays, but NEARM2 here is
the maximum number of particles in the blocks occupied by the particles of the
(II - 1)th group:

C loop 1 is over the group number
DO 1 II = 1, NGROUP

C definition of the first and last particles in group II
Nl = NINTG2(11) + 1
N2 = NINTG2(II + 1)

VECTORISING THE SPH CODE 111

C maximum number of neighbours in group II
M2 = NEARM2(11+ 1)

C loop 2 is over the number of neighbours
DO21=1, M2

C loop 3 is over the particles
DO 3J=Nl, N2

C if the Ith particle in the bloc of J is close enough to J then it is the
C (NNEIB + 1)th true neighbour

KT = ITBLOC(J, I)
IF (R(J, I).LT.H(KT)) THEN
NNEIB(J) = NNEIB(J) + 1
K = NNEIB(J)
ITNEIB(J, K) = KT
ENDIF

3 CONTINUE
2 CONTINUE
1 CONTINUE

NNEIB(J) is the number of neighbours of particle J, and ITNEIB(J, K) is the
label of the Kth neighbour of particle J.

The particles are then sorted into new groups according to the real number of
neighbours. After this the number of particles per group lies between 6 and 40 with
a mean value of 21 for the two density distributions.

Discussion

The three sorting steps are necessary but play different roles. Without the first
ordering the external loop in the blocks calculation would be performed over the
maximum number of particles in a cell. Both other sortings are used because the
calculations of the inter-particle distances and the comparison with the particle size
can be penalizing if the calculations are carried out over too many particles. The
second sorting also reduces the number of particles used to carry out the third
ordering. The third sorting groups have the same order as the first sorting ones
and use the NINTG3 and NEARM3 arrays, but NEARM3 here is the maximum
number of neighbours in the (II - 1) th group. The structure of a vectorisable and
optimized loop for the density calculation is then:

C loop 10 is over the group number
DO 1011 = 1, NGROUP

C definition of the first and last particles in the group
Nl = NINTG3(11) + 1
N2 = NINTG3(11+ 1)

C maximum number of real neighbours in the group
M2 = NEARM3(11+ 1)

C loop 20 is over the number of real neighbours
DO 201= 1, M2, 2

112 HADDAD, CLAUSSET, AND COMBES

C loop 30 is over the particles
DO30J=Nl, N2

K=I+l
C summation to calculate the density

DEN(J) = DEN(J) + W(J, I) + W(J, K)
30 CONTINUE
20 CONTINUE
10 CONTINUE

NGROUP lies between 9 and 10, and the inner loop is the longest. We have
unrolled by a factor 2 (K= Z+ 1) the loop 20 to optimize the calculations.

Between scalar and vectorial runs of the vectorized code we have observer a
factor 11 in the CPU time, and a factor 6 between the vectorised and scalar codes.
Figure 2 gives the variation of the CPU time versus the number of particles for the
three cases (vectorised scheme with vectorisation ON and OFF and scalar scheme).
Note that the N-body subroutine is not included in the evaluation of the total CPU
time, but it is only of the order of 3 % (therefore its dependence on N would have
been washed out by that of the hydrodynamic code). As regards CPU time varia-
tion versus the particles number, a proportionality has been found (i.e., CPU time
aN). This is due to the constant number of neighbours necessary to ensure good
accuracy and to the method that only makes useful calculations. Indeed, we expect
the CPU time to vary as aN. (NNEIB), this is only an order of magnitude since
the distribution of potential neighbours may depend on N even if (NNEIB) is
fixed.

10000

number of particles

FIG. 2. CPU time per time step versus the number of particles for several schemes: vectorised
scheme with vectorisation ON and OFF and scalar scheme. The calculations are performed over the
3 x 3, 5 x 5, and 7 x 7 blocks in the case of the collapse simulation (see Section 5). Note that the N-body
subroutine is not included in the evaluation of the total CPU time, but it is only of the order of 3%.

VECTORISING THE SPH CODE 113

In the vectorised case the slope of the CPU time vs N is significantly lower than
one. This can be explained by the vectorised gain at large vector size.

The calculations of the macroscopic variables and the gradients are more efficient
(factor 20), while for the search of the neighbours only a factor 5 is observed. This
method will be also more economical when the physical model includes a lot of
phenomena as magnetic field, radiation transfer, etc.

During the run, the number of groups is adjusted by an automatic procedure. It
calculates over three time-steps the number of groups that optimizes the CPU time.
The organization of the code is given in Table I. It is interesting to compare the
performances of the code for two initial distributions of density. We present in
Table II the CPU times per step for calculations performed over 3 x 3 and 5 x 5
blocks with uniform and gaussian distributions. For the first one, since the number
of neighbours is about the same for all particles it is preferable to use only one

TABLE I

Organisation of the Program

MAIN

lnltial conditions

Time I Time + dt

Call HYDRD

Call STEP
(time step)

Call AVANCE
(external forces,new positions

and velocities)

Ngroup optlmlsatlon

If Time < Time max

STOP

lall SORT1
(first Sorting according N I CEL)

Call BLOC
(Search per block)

Call SORT2
(second sorting)

Search of the neighbours

Call SORT3
(third sorting)

calculation of the neighbours distances
and particles stzes

Call DENS
density

Call VISCO
artificial viscosity

Pressure gradients

RETURN

114 HADDAD, CLAUSSET, AND COMBES

TABLE II

Time (in ms) for Each Step of the Hydrodynamical Part of the Code

1 group

Uniform
density

optimisation

I = r. exp(-x*/a*)

1 group optimisation

SORT1
BLOCK
SORT2
NEIGHBOURS
SORT3
DISTANCES
DENS
VISCO
GRADIENT
Total
Ratio
Total without

sorting
Ratio

13
67
30
66
12
34
12
93

2
329

1.1

214 244
0.9 1.5

13
67
23
64
11
32
12
81

1
304

9
41
21
43
13
41
13

105
1

287
1.8

9
30
11
26

7
13
8

55
1

160

Note. The tests are performed over two density distributions using 3980 particles, a search over the
3 x 3 and 5 x 5 blocks and with the Gingold-Monaghan viscous tensor. For the exponential function the
simulation window is [- 7, + 73 while the half intensity width is 3.5. We give the total CPU time with
and without sorting for the case where the group’s number is 1, for which the sortings are useless.

group, while for steeper density gradient the gain is more important with the
optimised number of groups. Moreover, the program is more efficient for the
gaussian distribution.

4. INTERPOLATION KERNELS

The Kernel

Each element of fluid is described by a smoothed out distribution of density, by
using an interpolation function w(r, h). The construction of the interpolation kernel
w(r, h) is guided by the requirements of accuracy, smoothness and computational
efficiency [151 and then different functions have been used. Unlike the exponential
function w(r, h) = 1/8Z7h3 exp(-r/h) chosen by Wood [19] that has nonzero
derivatives in r = 0 and then overestimates the self-contribution of a particle, we
prefer to build a kernel by

(Wr, h)/ar),=, = 0 (4.1)
(dw(r, h)/dr),=,=O (4.2)

w(r, h),,,=O (4.3 1

VECTORISING THE SPH CODE 115

and, of course,

h

27cw(~, h)r dr = 1. (4.4)

Several authors use a Gaussian function exp(-r2/h2) or a modified Gaussian
function exp(-r*/h*) * (3/2- r2/h2) [7, 151, but they are very smooth and they
require a neighbours search over 3h, so that we have chosen polynomial functions
that are nonzero only in a finite domain. Then the summation over all particles is
done only over the neighbouring particles. To reach a good interpolation accuracy,
a minimum number of neighbours have to be taken into account, depending on the
interpolation function. For the second and third degree polynomials w2 and wj
given below, a search over h is sufficient with respectively 25 and 21 neighbours,
unlike the Gaussian function that requires 50 neighbours over 3h:

W, = 18/(7xh*) (l-3242) for u = r/h < f

;(1-242) for jdU<l (4.5)
0 for u>l

W, = 40/(7xh*) (1-66u2+6243) for u = r/h < i

2(1 -U)3 for iQZ461 (4.6)
0 for u>l

After testing these functions we have chosen W3 which minimizes the number of
neighbours and interpolates with errors not exceedig O(h*).

The Variable Kernel Size

One of the important points of our scheme lies in the variable kernel size h. Some
authors [19, 20, 1, 14, 41 have used a variable h that allows a variable resolution,
without the complex use of windows with varying cell size as in grid schemes.
Moreover, the size of a fluid element adapts itself automatically according to the
local density. The relationship between h and p is then [6]:

h*=Klp where K is a constant. (4.7)

To optimize the accuracy of the calculations the following iterative procedure can
be used:

h* = K/p + calculation of w + calculation of p

TI

It converge for the K values that optimize the calculations. Another method can
be used, such as the determination of the variance (h* = (Ar*) - (A)*) over the

116 HADDAD, CLAUSSET, AND COMBES

particles in a block. However, when the density changes rapidly in time, the h value
can be extrapolated from the previous time steps. In particular, a too rapid change
in the h values may be a source of instabilities so that it is better to limit the
variation to a few percent of the previous value at each time step. However, this
temporal condition does not guarantee smooth spatial variations of h.

Therefore, we use a better method which suppresses the instabilities due to
the variable h. This method consists in calculating the average density at the
position of a particle and then taking h2 = K/p,,,, . pmean is computed by
averaging p* over neighbours with the SPH algorithm, i.e., according to
P mean =(l/P)CimiP(r;) 4lr--il, Ai)= <P’)lP.

This method limits the variation of h, such that the equations of motion (2.4) are
still valid in their simple form, without any inclusion of terms proportional to the
derivatives of h (Vh and ah/at [6]). Evrard [4] has detailed analytically the
required conditions for these added terms to be negligible, with a kernel size
depending on the local density and concluded that h must vary on scales “a” much
larger than h: grad h/grad rcrh*/ra < 1, where r is the mean interparticle distance.

The Artificial Viscosity

For all the schemes used to simulate a fluid a crucial test lies in the shock simula-
tion. Indeed a real shock occurs on the scale of the order of the mean free path of
the fluid, which is much smaller than the resolution of the simulation. It is then
necessary to smooth the density distribution over larger scales, such that the shock
extends over a few resolution lengths. When applying the particle method it is con-
venient to have recourse to artificial viscosities that can be easily included in the
equations of fluid. Using our method and our kernel we have tested several artificial
viscosities proposed by Monaghan and Gingold [7] (1983) and a linear combina-
tion (CL) of the first such problems introduced:

The Neumann-Ritchmyer (NR) viscous pressure:

q = aph*(V .v)’ for V.v<O

0 for V.v>O

The Bulk (B) viscosity:

q= -aphc(V.v) for V.v<O

0 for V.v>O

(4.8)

(4.9)

FIG. 3. (a-f) Dendity and velocity profiles of an isothermal shock at the time 5C ;’ (where C, is the
sound speed) with respectively no viscosity, Bulk viscosity (a = 0.8), Neumann-Richtmeyer viscosity
(a = 0.8), Gingold-Monaghan viscous tensor (aI =0.8, a, = 0, and p =O.l), (a, =0.8, a2 = 0.8, and
b = O.l), linear combination.

I
-10 0 LO

Position

I
-10 0 10

Position

c’or,,,l,,.,,’ “““I

2t -I

I , , , , , . , , , I , , I , ”

I”“““‘# ““I “‘I
-10 0 LO

Position

IT--, ““““““‘I

_’ \ -i

,/’
’ I

- -i

-I’ “‘/““1”“1””
-10 0 LO

Position

i

-,I -10 0 10
Position Position

117

d 1”,~.~,.,,.,.,..,,,,,

e

Ll..~.,....,...i
-10 0 10

Position

4

01”‘f”“““““‘l
-10 0 10

Position
10 f I”“““““““,

I

ll---i -10 0 10

11 “‘1 “.‘I”” 1 ” 1
-10 0 10

Position

II
t i

-0.5 t

-lL”““““‘.““J 1
-10 0 10

Position
I,..,,....,....,.,

05 c

FIG. 3-Continued

118

VECTORISING THE SPH CODE 119

where CI is a constant, c is the sound speed, v is the fluid velocity, and p is the
density.

The G ingold-Monaghan (GM) viscous tensor:

17ij = -c~lPi,(alqij + cc*qG)

(4.10)

with

qv = rquyl(hqc~)l(r$lh~ + PI for vi,rti <O

qii=o for viirii > 0,

where 0 <j @ 1 is a constant and for any function G ; we define

G ,, = (Gi + GJ2.

Il,, is such that

(4.11)

(4.12)

We then consider an isothermal shock problem for a perfect gas analogous to
that considered by Leboeuf et al. [111. The initial state consists of a high density
plateau surrounded by a region where the density is lower. The analytical solutions
can be calculated only for 1D shocks so that we choose an initial symmetry-the
density depends only on the x variable-that leads to an 1D solution, although the
calculations are carried with a 2D code:

xc -7 or x>7- p=4

-7<x<7 p=9.

The results for each artificial viscosity are compared in Figs. 3a to 3f. The conclu-
sion regarding the advantages of a given viscosity presents several differences from
those with the shock tube problem (adiabatic) considered by G ingold and
Monaghan [7] and Sod [18]. The first representation shows, for the case without
artificial viscosity, the amplification of the oscillations that can lead to numerical
divergences. The problem is solved by artificial viscosity as is shown by the other
figures. For this type of shock the NR viscosity does not suppress all the oscilla-
tions. The density and velocity profiles are more smoothed by the B than by the
GM, but the GM leads systematically to underestimated velocity values. The linear
combination is comparable to the GM for the smoothing and to the B for the
accuracy of the density values. All tests are carried out with variable size kernels.
The various profiles are given for y = 0, but for finite y the results are comparable;
i.e., there is no movement in the y-direction except in the neighbourhood of the
boundaries. Moreover, the same calculation was performed with inversion of the x
and y variables and the equivalence of the two directions was checked. We conclude

120 HADDAD, CLAUSSET, AND COMBES

that for isothermal shocks the CL or B viscosities can be used although the CL
underestimates the velocity, and with an important smoothing for the B, while for
adiabatic shocks the GM leads to better results.

3 D Extension

It is straightforward to extend the method in three dimensions, but this will be
done at the expense of memory and time. This is mainly due to the necessary
increase of the number N of particles, to keep a performant spatial resolution.
Within the same N, we can, however, estimate the necessary increase of memory for

I” ‘I’ “,“I’ ” ‘,‘I’ I I” ‘I”’ /
b

d
”

FIG. 4. (ad) Non-rotating cylindrical cloud [lo]. (a) shows the initial distribution of particles.
Figures 4bd on the left side show the positions of the fluid particles and, on the right side, the
integrated density levels (i.e., 2npR) with 5000 particles, at time f=2.3 x 10”s and for temperatures
equal respectively to 7.5K, lOK, and 13SK.

VECTORISINGTHESPH CODE 121

a 3D simulation. The array that would be considerably extended is TTPCEL, which
would gain one dimension: the necessary memory is multiplied by the number of
cells in the grid (here ~2&40), but this array occupied less than &th of the total,
in 2D, with NZ 104. One of the biggest array is ITBLOC, which has no reason to
vary. Therefore, the memory increase in 3D, due only to physical vectors (like the
positions of the particles) is not a major penalizing factor.

5. ISOTHERMAL COLLAPSE OF AN AXIALLY SYMMETRIC CLOUD

To compare our method with other hydrodynamic codes we have simulated
isothermal collapes of axially symmetric clouds. The calculations are performed in
a meridian plane using cylindrical coordinates r, 8, z, where the azimuthal coor-
dinate 8 does not appear explicitly because of the assumption of axial symmetry:
each particle represents a small toroidal element. Accordingly, the Lagrangian
equations are given below in cylindrical coordinates.

Dp/Dt+pV.v=O

Dv, JDt + V, PJp + V,d - this method is not optimal for
variable resolution calculations, since gravity is computed on a grid, which is fixed
spatially for all the fluid. In the course of the collapse, however, the total grid has
been adjusted to the total extension of the fluid, i.e., the spatial resolution evolves
toward smaller grid size with time. We think that the spatially variable resolution
is much more important for the fluid hydrodynamics, since it is based on calcula-
tions over the sole neighbours, than for the long-range gravitation forces. We use
this method as a comparative test of the program, and we confer the reader to
gridless methods such as the tree code to solve this problem [9] . The latter,
however, consume much more computing time.

More precisely, we solve the N-body interactions in 2D, since the 3D problem is
axisymmetric. The particles represent tori all with the same vertical axis Oz, and the
same mass. The convolution of density and gravitational potential is transformed in
a simple product in the z-direction only. A direct convolution is made in the
r-direction.

The potential between particles of coordinates (r, z) and

(r’, z’) is that between
two tori of radii r and r’ and altitude z and z’:

@ (r, r’, z, z’) = G j &/n[(z - z’)~ + r2 + rr2 - 2rr’ cos 8 + a’] - l”, (5.5)

122 HADDAD, CLAUSSET, AND COMBES

where a is the softening length (the gravitational potential is softened from the
Newtonian law in l/r, by l/J=, to compensate for the restricted number of
particles; a is of the order of the cell size). The potential law (5.5) is computed and
tabulated once at the beginning of the simulation.

The dimension of the grid is 64 in radius, and Nz = 256 in z: indeed in the FFT
method, images must be avoided and the useful grid is only half (Nz useful = 128)
of the total grid. The linear dimensions of one cell in z and r are therefore equal.
The CPU time for the FFT varies as N,. log N,, where N, is the cell number. This
has not been varied here. Besides, the forces computation varies linearly with N, the

1 ” ” ” ” I ” ” / ”
c ; : 12ii.34

FIG. 5. (a-g) Rotating spherical cloud with uniform initial density. (a) shows the initial distribution
of 6000 particles; Figs. 5b-g show the evolution of the collapsing cloud. The times are given in program
units (i.e., 127 years). It is possible to distinguish the several steps: (bt(c), contraction along the 2 axis;
then collapse in the radial direction and formation of a ring.

VECTORISING THE SPH CODE 123

number of particles. For N= 15,000, the contribution of the CPU time is 34 ms
(3%).

Two types of initial conditions have been taken. The first one consists in a non-
rotating cylindrical cloud with the same initial conditions as Larson [IO] as
illustrated in Fig. 4a. (In Figs. 4a and 5a the central hole surrounding the axis is
due to the 2D density distribution, because for uniform p the 2D density is equal
to 271pR, where R is from the axis.) The initial mass density then is

p(r,z)=7.8x10~‘8(l+(10r/R)2)~‘gcm~3, (5.6)
where R = 10” cm is the radius of the cloud, so that the initial 2D density distribu-
tion is

pL(r, z) = 2v(r, z). (5.7)

124 HADDAD, CLAUSSET, AND COMBES

According to Ostriker [163 and Mestel [131 a cylindrical equilibrium configura-
tion is possible only if the mass per unit length along the cylinder has the value:

M/L=2c%'T/G, (5.8)
where %? is the perfect gas constant. With the assumed initial conditions for
T= lOK, the gas pressure and the gravity should nearly balance. Figure 4b shows
the density distribution resulting at a typical time in the collapse (t = 2.3 x lOI s)
when a temperature of 7.5K is assumed. In this case the horizontal pressure
gradient is insufficient to prevent the horizontal collapse. On the contrary, when a
temperature of 13K is assumed (Fig. 4d), the pressure gradient leads to a horizontal
expansion and, for the critical temperature T= lOK, an equilibrium is observed
(Fig. 4~). But at greater time, the simulation leads in all cases to a vertical collapse.

The second simulation consists in the collapse of a spherical rotating cloud with
uniform initial density p = 4.7 x lo-l9 g cm -3 and 6000 particles (Fig. 5a). The
same initial conditions as Larson [lo] and Black and Bodenheimer [S] have been
taken, i.e., a rotation velocity of 0.90,, where o, is the critical rotation velocity for
the collapse given by

of=5/R2(0.42GM/R-c;), (5.9)
where c, is the sound speed. Initially the collapse is mainly in the Z-direction, as
the cloud is centrifugally supported in the X- Y plane (Figs. 5b-c). Then a strong
shock forms in the central region and the cloud collapses in the X- Y plane
(Figs. 5d-g). At the end, the formation of a ring is observed (Fig. 5g) at a position
comparable to that found by Black and Bodenheimer [3] but the ring is gravita-
tionally unstable and collapses in the end. These results can be compared with
Wood’s 3D SPH simulations [191 with only 500 particles and therefore low resolu-
tion. He found that, finally, a non-axisymmetric mode becomes unstable, which
justifies the 3D simulations.

FIG. 6. Density levels resulting from the collapse of the rotating cloud.

VECTORISINGTHESPH CODE 125

6. CONCLUSION

We have vectorised the SPH algorithm, which now is quite time-performant with
respect to other concurrent hydrodynamical codes. The algorithm has the great
advantages of being Lagrangian and of simple conception. Also the code introduces
only little dissipation, in contrast to grid-dependent algorithms. In our vectorised
code, the CPU time grows linearly with the number of particles. This is due to the
constant number of neighbours necessary to ensure good accuracy and to the algo-
rithm that suppresses all unnecessary calculations. This enables us to handle many
more particles and then to improve significantly the dynamics, which was a weak
point of the SPH algorithm, although somewhat cured by the variable resolution.
The larger number of particles also allows a correct treatment of the low-density
regions, such as the boundaries, which was a second difficulty of the method.

In our code, it is to be noted that the calculations of the macroscopic variables
and the gradients are much more efficiently vectorised (factor 20), while for the
search of the neighbours only a factor 5 is observed between vectorial and scalar
runs. For the whole program, the vectorisation gain is then 6 (Z 1 for 15,000 par-
ticles). Therefore, the code will be much more interesting when the physical model
includes a lot of phenomena such as magnetic field, radiative transfer, etc. Our tests
and comparisons with other works have proved that the variable resolution gives
good results, particulary for the collapse, where the resolution is a crucial problem.
Our adjustment of the kernel size h suppresses the instabilities due to its variation
and is more fit to density distributions with steep gradients.

APPENDIX

We present in this appendix a scheme that will be performant on scalar
processors.

Calculation of the ITNEIB and NNEIB arrays.

C loop 1 is over the particles
DO lJ= 1, N

L = LL(J)
M = MM(J)

C loop 2 is over the cells of the block
DO2MR=M-NC, M-NC
DO2LR=L-NC, L+NC

KT = NlCEL(LR, MR)
C if no particle in the cell, it is no necessary to make any
C calculation

IF (KT.EQ.0) GO TO 2

126 HADDAD, CLAUSSET, AND COMBES

C calculation of the interparticle distance
3 DX = X(J) - X(KT)

DY = Y(J) - Y(KT)
R2=DX*DX+DY*DY
H2 = H(KT) * H(KT)

C if KT is close enough to J then KT is the (NNEIB + 1)th neighbour of J
IF (R2.LT.H2) THEN
K = NNEIB(J) + 1
NNEIB(J) = K
ITNEIB(J, K) = KT
ENDIF

C use of the chaining to find the next neighbour
KT = ICHAIN(KT)
IF (KT.NE.0) GO TO 3

2 CONTINUE
1 CONTINUE

where NC is 1 for the 3 x 3 block and 2 for the 5 x 5 one.

ACKNOWLEDGMENT

The calculations have been performed on the VP 200 of the CIRCE (Centre Inter Regional de Calcul
Electronique, Orsay).

REFERENCES

1. W. BENZ, Astron. Astrophys. 139, 378 (1984).
2. W. BENZ AND J. G. HILLS, Astrophys. J. 323, 614 (1987).
3. D. C. BLACK AND P. B~DENHEIMER, Astrophys. J. 206, 138 (1976).
4. A. E. EVRARD, Mon. Not. R. Astron. Sot. 235, 911 (1988).
5. R. A. GING~LD AND J. J. MONAGHAN, Mon. Not. R. Aaron. Sot. 181, 375 (1977).
6. R. A. GINGOLD AND J. J. MONAGHAN, J. Comput. Phys. 46, 429 (1982).
7. R. A. GINC~LD AND J. J. MONAGHAN, Mon. Not. R. Aaron. Sot. 204, 115 (1983).
8. F. H. HARLOW, Compur. Phys. Commun. 48, 1 (1988).
9. L. HERNQUIST AND N. KATZ, Astrophys. J. Suppl. 70, 419 (1989).

10. R. B. LARSON, Mon. Not. R. Aaron. Sot. 156, 437 (1972).
11. J. N. LEBOEUF, T. TAJIMA, AND J. M. DAWSON, J. Comput. Phys. 31, 379 (1979).
12. L. B. LUCY, Astron. J. 82, 1013 (1977).
13. L. MESTEL, Q. J. R. Asfron. Sot. 6, 161 (1965).
14. S. C. MIYAMA, C. HAYASHI, AND S. NARITA, Asfrophys. J. 279, 621 (1984).
15. J. J. MONAGHAN AND J. C. LATTANZIO, Aaron. Astrophys. 149, 135 (1985).
16. J. OSTRIKER, Astrophys. J. 140, 1056 (1964).
17. R. H. SANDERS AND K. H. PRENDERGAST, Asfrophys. J. 188, 489 (1974).
18. G. A. SOD, J. Compui. Phys. 27, 1 (1978).
19. D. WOOD, Mon. Not. R. Astron. Sot. 194, 201 (1981).
20. D. WOOD, Mon. Nor. R. Astron. Sot. 199, 331 (1982).

